
PROPRIETARY INFORMATION

TitanEngine 3.0 – Return of the
Titan and the exile of PE
malformation

1

Hack In The Box 2012, Amsterdam

PROPRIETARY INFORMATION 2

AGING BUSINESS OF SECURITY

Maturing Code

• PE has been on Windows for 18 Years now
• Optional features
• Backward compatibility
• Deprecated functionality
• Allowed values
• Point release and bug fixes

Multiple Specifications

Negative Testing

SDLC

PROPRIETARY INFORMATION 3

SOFTWARE DOCUMENTATION

Always behind

Incorrectly translated

Inaccurate by design

• Developers are asked how should spec function?
• They may not remember how it functions

Spirit of the release 1 year later? 5 years later?

Zero bugs = Perfectly documented

• Who bug fixes documentation?
• Who proof reads documentation for technical errors?

PROPRIETARY INFORMATION 4

BRIEF HISTORY OF PECOFF
What is PECOFF?

• Microsoft migrated to the PE format with the introduction of
the Windows NT 3.1 in 1993

• The Portable Executable (PE) format is a file format for
executables, object code and DLLs, used in 32-bit and 64-bit
versions of Windows operating systems

• The PE format is a data structure that encapsulates the
information necessary for the Windows OS loader to manage
the wrapped executable code

 Where can you find it?
• Microsoft Windows / Windows CE / Xbox
• Extensible Firmware Interface (EFI)
• ReactOS
• WINE

PROPRIETARY INFORMATION 5

WHAT IS A MALFORMATION?

Malformations

• Malformations are simple or complex modifications
• File format data and/or layout are modified
• Unusual form is not inside the boundaries permitted by the

file format documentation but is still considered valid from
the standpoint of tools that parse them.

• Malformation purpose is either breaking or omitting tools
from parsing the malformed format correctly.

 Simple malformations

• Require single field or data table modifications
 Complex malformations

• Require multiple fields or data tables modifications

PROPRIETARY INFORMATION 6

WHAT DOES IT AFFECT?
Security consequences

Malformations can have serious consequences

• Breaking unpacking systems
• Remote code execution
• Denial of service
• Sandbox escape

PE file format validation is hard!
• Due to its complexity many things can work in

multiple ways achieving the same result
• Backward compatibility is very important and even

though operating system loader evolves it still has
to support obsolete compilers and files that are
most definitely not compliant with the PECOFF docs

PROPRIETARY INFORMATION 7

PE MALFORMATIONS

 Previous published work on the PE subject

Constant Insecurity – Pericin/Vuksan [BH LV 2011]
PE Specification vs PE Loader - Alexander Liskin [SAS 2010]
PE Format as Source of Vulnerability - Ivan Teblin [SAS 2010]
Doin' The Eagle Rock - Peter Ferrie, Virus Bulletin, March 2010
Fun With Thread Local Storage (part 3) - Peter Ferrie, July 2008
Fun With Thread Local Storage (part 2) - Peter Ferrie, June 2008
Fun With Thread Local Storage (part 1) - Peter Ferrie, June 2008

PROPRIETARY INFORMATION 8

TITANENGINE

Open source library for PE file processing

Version 1.0
 Historic version, purely dynamic file processing centered
Version 2.0
 Presented at BlackHat USA 2009
 Total rewrite from ASM to C
 Many improvements in the field of dynamic file processing
Version 3.0
 Presenting here at Hack In the Box 2012
 Total rewrite to C++
 Purely static file processing centered

PROPRIETARY INFORMATION 9

TITANENGINE 3.0

Made with the following problems in mind

Processing strange, malformed and damaged PE files
Detecting malformations and damaged files
Repairing damaged files in file preprocessing
Extremely quick PE file processing

Full support for static file processing

Easy to use interface for data reading/writing
Large number of decompression algorithms included
Ability to generate dynamic decrypters on the fly
Ability to revert import name hashes back to strings

PROPRIETARY INFORMATION

SIMPLE PECOFF
MALFORMATIONS

10

PROPRIETARY INFORMATION 11

PE file format layout Top level description

DOS header

“MZ” & e_lfanew
PECOFF header

COFF file header
Optional header

Sections

Code, data, imports, exports,
resources…

Overlay

Appended file data

DOS

PE

Sections

(code, data,

imports)

Overlay

Resources

Traditional layout

GENERAL PE FORMAT LAYOUT

PROPRIETARY INFORMATION

DOS header layout

 e_lfanew
• Points to PE

header
• Is a 32 bit value
• Must be 4 byte

aligned

e_magic

e_cblp

e_cp

e_crlc

e_cparhdr

e_minalloc

e_maxalloc

e_ss

e_sp

e_csum

e_ip

e_cs

e_lfarlc

e_ovno

reserved

e_res

e_oemid

e_oeminfo

e_res2

reserved

e_elfanew

PE Header

MZ

c
o

n
ti
n

u
a
ti
o
n

DOS HEADER

PROPRIETARY INFORMATION

PE file format layout PE file malformation

DOS

PE

Overlay

DOS

PE

Sections

(code, data,

imports)

Overlay

Resources

Traditional layout

Sections

(code, data,

imports)

Resources

e
_

lf
a

n
e
w

N
tS

iz
e
O

fH
e
a
d
e
rs

DOS HEADER | E_LFANEW

PROPRIETARY INFORMATION

PE file format layout

SizeOfOptionalHeaders
The size of the optional header, which is
required for executable files but not for
object files.

Issues with SizeOfOptionalHeaders
Since the field that allows us to move the
section table is a 16 bit field the maximum
distance that we can move the table is just
0xFFFF. This doesn't limit the maximum
size of the file as the section table doesn't
need to be moved to the overlay for this to
work, just the region of physical space
which isn't mapped in memory.

DOS

PE

Sections

(code, data,

imports)

Overlay

Resources

Section table

S
iz

e
O

fO
p

ti
o

n
a
H

e
a
d
e

rs

demo

PE HEADER | SIZEOFOPTIONALHEADERS

PROPRIETARY INFORMATION

PE file format layout

NtSizeOfHeaders
Is meant to determine the PE header physical
boundaries
It also implicitly determines the virtual start of
the first section

Issues with NtSizeOfHeaders
It isn’t rounded up to FileAlignment
Only the part of the PE header up until and
including FileAlignment field needs to be inside
the specified range
Regardless of the specified header size the rest
of the header is processed from disk

But not all of it!

DOS

PE

Sections

(code, data,

imports)

Overlay

Resources

N
tS

iz
e
O

fH
e
a
d
e
rs

PE cont.

PE HEADER | NTSIZEOFHEADERS

PROPRIETARY INFORMATION

Dual PE header malformation

e_lfanew : 0xF80
NtSizeOfHeaders : 0x1000

Effectively truncating part of the PE
header containing data tables

FirstSectionRO: 0x1200
FirstSectionVO: 0x1000

At the start of the section we store the
continuation of the PE header
containing data tables (e.g. imports are different and
parsed from memory and not from disk by the loader)

PE file malformation

PE Section

DOS

PE

Sections

Overlay

Resources

PE cont.

N
tS

iz
e
O

fH
e
a
d
e
rs

P
E

 h
e
a
d
e
r o

n
 d

is
k

V
O

:
0
x
1
0
0
0

P
E

 S
e
c
tio

n
s

Raw size: 0x1200

PE HEADER | NTSIZEOFHEADERS

PROPRIETARY INFORMATION

Parsing problems
Reverse engineering tools parse
the data from disk while the
operating system loader parses
the data tables from memory.

PE file malformation

PE Section

DOS

PE

Sections

Overlay

Resources

PE cont.

N
tS

iz
e
O

fH
e
a
d
e
rs

V

O
:
0
x
1
0
0
0

Raw size: 0x1200

Import table

Import Table

Reloc table

Reloc table

Tables present on disk but not parsed by the loader

Tables present in memory and parsed by the loader

demo

PE HEADER | DUAL DATA TABLES

PROPRIETARY INFORMATION

FileAlignment
The alignment factor (in bytes) that is
used to align the raw data of sections in
the image file. The value should be a
power of 2 between 512 and 64 K,
inclusive. The default is 512.

FileAlignment issues
Because of the conditions set by the
PECOFF documentation whose excerpt is
stated above we can safely assume that
the value of FileAlignment can be
hardcoded to 0x200.
Raw start of the sections is calculated by
the formula (section_offset / 0x200) * 0x200

PE file malformation

DOS

PE

Section[1]

Overlay

Resources

Section[2]

Section[n]

Raw offset: 0x10

nSPack

PE HEADER | FILE ALIGNMENT

PROPRIETARY INFORMATION

SectionAlignment
SectionAlignment is the alignment (in bytes) of
sections when they are loaded into memory. It
must be greater than or equal to FileAlignment.
The default is the page size for the architecture
or a greater value which is the multiplier of the
default page size.

SectionAlignment issues
While every section must start as the multiplier
of SectionAlignment the first section doesn't
always start at the address which is equal to
the value of SectionAlignment. Virtual start of
the first section is calculated as the rounded up
SizeOfHeaders value. That way header and all
subsequent sections are committed to memory
continuously with no gaps in between them.

PE file layout

DOS

PE

Section[1]

Overlay

Resources

Section[2]

Section[n]

Virtual offset: 0x2000

Virtual offset: 0x3000

Virtual offset: 0x6000

Virtual offset: 0x8000

SectionAlignment: 0x1000

NtSizeOfHeaders: 0x2000

PE HEADER | SECTION ALIGNMENT

PROPRIETARY INFORMATION

DOS/PE headers
By default the PE header has read and
execute attributes set. If DEP has been
turned on the header has read only
attributes.

SectionAlignment /
FileAlignment issues

If the values of FileAlignment and
SectionAlignment have been set to the
same value below 0x1000 the header
will become writable. Typical value
selected for this purpose is 0x200.

PE file layout

DOS

PE

Overlay

Resources

Sections

(code, data,

imports)

SectionAlignment: 0x200

FileAlignment: 0x200

demo

PE HEADER | WRITABLE HEADERS

PROPRIETARY INFORMATION

AddressOfEntryPoint
The address of the entry point is relative to the
image base when the executable file is loaded
into memory. For program images, this is the
starting address. For device drivers, this is the
address of the initialization function. An entry
point is optional for DLLs. When no entry point
is present, this field must be zero.

AddressOfEntryPoint issues
This excerpt from the PECOFF documentation
implies that the entry point is only zero for
DLLs with no entry point and that the entry
point must reside inside the image. Neither of
these two statements is true.

PE file layout

DOS

PE

Overlay

Resources

Sections

(code, data,

imports)

A
d

d
re

s
s
O

fE
n
try

P
o

in
t

/*10000*/ DEC EBP

/*10001*/ POP EDX

/*10002*/ NOP

/*10003*/ JMP 00011000

Statically loaded DLL

PE HEADER | ADDRESSOFENTRYPOINT

PROPRIETARY INFORMATION

Layout problem with writing static unpackers

PE file disk layout

DOS

PE

Overlay

Resources

Section[1]

Section[2]

F
ile

 d
a

ta
 i
s
 l
in

e
a

r
o

n
 d

is
k

DOS

PE

Overlay

Resources

Section[1/3]

Section[2]

Virtual size: 0x3000

Section[3/3]

Section[2/3]

S
e
c
tio

n
 [1

]

F
ile

 d
a

ta
 i
s
 n

o
t
lin

e
a

r
o

n
 d

is
k

demo

PE HEADER | SECTION DATA

Section data shuffling

PROPRIETARY INFORMATION

PE file disk layout

DOS

PE

Overlay

Resources

Section[1]

Section[2]

F
ile

 d
a

ta
 i
s
 l
in

e
a

r
o

n
 d

is
k

demo

PE HEADER | SECTION DATA

Physical offset: 0x12345678

Physical size: 0x00

Section data

File can have sections that
physically do not exist on disk. This
must be taken into account when
parsing and validating PE images.

PROPRIETARY INFORMATION

SectionNumber
PE files have arbitrary section numbers;
however it is assumed that the number of
possible sections that a file can consist of is
within a range from one to 96 as stated by the
PECOFF documentation.

SectionNumber issues
The latest implementations allow for this limit
to be expanded to the range from zero sections
to the maximum value allowed by the 16 bit
field SectionNumber which is 0xFFFF.
Huge number of sections is problematic for
many reverse engineering and security tools
No sections is even more problematic!

PE file layout

DOS

PE

Overlay

Resources

Sections
[0x00 – 0xFFFF]

PE HEADER | SECTION NUMBER

PROPRIETARY INFORMATION

Making a zero section file
File must be converted to flat memory
model in which all relative virtual
addresses are equivalent to their physical
counterparts
Section table is removed and the number
of section is set to zero
NtSizeOfHeaders is set to the physical size
of the mapped memory
NtSizeOfImage is set to equal or grater
value than NtSizeOfHeaders
FileAlignment and SectionAlignment are
set to same value 0x200 to make the
header writable

Zero section PE file layout

DOS

PE

Overlay

Resources

Sections

E
v
e
ry

th
in

g
 i
s
 i
n
s
id

e
 t
h
e
 h

e
a
d
e
r

demo

PE HEADER | SECTION NUMBER

PROPRIETARY INFORMATION

 TITANENGINE 3.0

Features

Static PE file format processing functionality
 Ability to read, modify and create new PE files
 Ability to read, modify and create individual PE tables
Support for decompressing large number of formats
Support for building custom dynamic decrypters
Support for import hash to original name reverting
PE file format validation, malformation detection, damage assessment
and recovery

Workshop package download

 http://www.reversinglabs.com/download/HITB.zip

PROPRIETARY INFORMATION

demo

 CREATING A NEW PE32 FILE

PE file format layout

Creating a new PE32 file
titan_create_file API is used to create a
new PE32/PE32+ file in memory. Once
created this file can be filled with code
and PE tables that link to that code.
Additionally overlay data can be
appended to the end of the file.
No sections exist at this time and they
must be added before storing data at
that location.
Default PE header can be accessed and
the parameters can be changed at any
time.

DOS

PE

Sections

(code & data)

Resources

Relocations

Memory data layout

Imports

Exports

PROPRIETARY INFORMATION

demo

 ADDING A CODE & DATA SECTIONS

PE file format layout

Adding a code section
titan_add_new_section API is used to
create a section inside the PE header.
Initially section can have any size. Based
on the data inside the section its physical
size is reduced to a minimum aligned to
FileAlignment.
Last section can always be increased by
writing past its end but writing must start
with the current section limits.
titan_set_content API is used to write
data to any part of the PE file.
titan_set_pe_header API is used to
update the PE header data. Once we
write data to our newly created section
we want to move the AddressOfEntry
point to the start of our code section.

DOS

PE

Sections

(code & data)

Resources

Relocations

Memory data layout

Imports

Exports

PROPRIETARY INFORMATION

COMPLEX PECOFF
MALFORMATIONS

29

PROPRIETARY INFORMATION

 Import table overview

PE files that import symbols statically have an import table
Import table consists of names of dynamic link libraries and
function names and/or function ordinal numbers

Import Directory Table

Null

Import Lookup Table

Null

Import Lookup Table

Null

DOS

PE

Section

(imports)

Resources

Import name

table

Sections

(code, data)

PE file on disk

PE HEADER | IMPORT TABLE

PROPRIETARY INFORMATION

Dummy import table entries

DOS

PE

Sections

(code, data,

imports)

Overlay

Resources

Traditional layout

ImportLookupTable TimeStamp Forwarder chain DLL name
Import Address

Table

Single import table directory (IID)

Any DLL Name

Hint+Name Hint+Name Hint+Name

Hint+Name Hint+Name Hint+Name

…

…

Pointing to single zero IAT entry

0x00

0x00

* Never loaded so can be non existing

PE HEADER | IMPORT TABLE

PROPRIETARY INFORMATION

demo

 ADDING AN IMPORT TABLE

PE file format layout

DOS

PE

Sections

(code & data)

Resources

Relocations

Memory data layout

Adding an import table
titan_add_import_library API is used to
add new imported DLL file.
titan_add_import_function API is used
to add APIs to all DLLs added with
titan_add_import_library.
titan_add_stolen_import_info API is
used to connect the calls and jumps
within the code section with the IAT
which is yet to be created. This is
optional and only used because we
chose to add import table data before
creating a section that will hold the IAT.
titan_write_import_table API is used to
write the import table data we pushed
to the engine to the specified location.
For this PE data table we added a new
section.

Imports

Exports

PROPRIETARY INFORMATION

 Export table overview

PE files can also export symbols that other PE files import
PE files can export functions and variables

Export Directory Table
DOS

PE

Section

(exports)

Resources

Sections

(code, data,

imports)

Export Address Table

Export Name Table

Export Ordinal Table

PE file on disk

PE HEADER | EXPORT TABLE

PROPRIETARY INFORMATION

Import obfuscation

DOS

PE

Sections

(code, data,

imports)

Overlay

Resources

sample.exe

ImportTable

sample.exe “Function1”

ExportTable

Function1

Kernel32.LoadLibrary

A

Forwards to kernel32

“Strings” don’t need to be ASCII

demo

PE HEADER | IMPORT & EXPORT TABLE

PROPRIETARY INFORMATION

Import obfuscation with hint

DOS

PE

Sections

(code, data,

imports)

Overlay

Resources

sample.exe

ImportTable

sample.exe 0x00,“Function1”

ExportTable

Function1

Kernel32.LoadLibrary

A

Forwards to kernel32

0x01,“Function1”

Function1

urlmon.UrlDownloadT

oFileA

Forwards to urlmon

Index provided by the hint is checked first

PE HEADER | IMPORT & EXPORT TABLE
demo

PROPRIETARY INFORMATION

Rebuilding data with exports

DOS

PE

Sections

(code, data,

imports)

Overlay

Resources

sample.exe

ImportLookupTable TimeStamp Forwarder chain DLL name
Import Address

Table

Single import table directory (IID)

sample.exe

Hint+Name Hint+Name Hint+Name … 0x00

ImportLookupTable TimeStamp Forwarder chain DLL name
Import Address

Table

Single import table directory (IID)

Kernel32.dll

PE HEADER | IMPORT & EXPORT TABLE

PROPRIETARY INFORMATION

 Rebuilding code from exports

File imports functions from its own
export table.
Export table doesn’t hold the valid
pointers, it holds data that will be
written to the import table.
Import table pointers are stored at the
original code location (e.g. entry point)

Once file is loaded its import table is
filled with the original code which in
turn executes after that normally.

Rebuilding code with exports

DOS

PE

Sections

(code, data,

imports)

Overlay

Resources

sample.exe

IAT / code

exports

demo

PE HEADER | IMPORT & EXPORT TABLE

PROPRIETARY INFORMATION

demo

 ADDING AN EXPORT TABLE

PE file format layout

DOS

PE

Sections

(code & data)

Resources

Relocations

Memory data layout

Adding an export table

titan_init_export_data API is used to
set basic export table parameters
such as the ordinal base the and
module name.
titan_add_export_function API is
used to add new exported functions
to the export table. Forwarders can
also be added with a separate API.
titan_write_export_table API is used
to write the export table data we
pushed to the engine to the
specified location. For this PE data
table we added a new section.

Imports

Exports

PROPRIETARY INFORMATION

 Thread local storage table overview

TLS is a special storage class that Windows support in which a
data object is not an automatic (stack) variable, yet is local to
each individual thread that runs the code. Thus, each thread can
maintain a different value for a variable declared by using TLS.

DOS

PE

Section

(TLS)

Resources

Sections

(code, data,

imports)

TLS Directory Table

TLS CallBack array

PE file on disk

PE HEADER | TLS TABLE

PROPRIETARY INFORMATION

 Dynamic callback table generation

TLS callback array is processed from
memory so it is possible that its content is
modified from the first callback.
TLS callback array can be overlapped with
import table so that code which gets
executed is outside image.
TLS callback array can be overlapped with
linked import & export table so that the
executed code is still in the same image.

Dynamic callbacks

DOS

PE

Sections

Overlay

Resources

TLS +TLS

Add TLS callback

code

demo

PE HEADER | TLS TABLE

PROPRIETARY INFORMATION

 Relocation table overview
Base relocation table is used by the operating system loader to
rebase the file in memory if the PE file needs to load on the base
address which is different from its default one which is specified
by the ImageBase PE header field.

DOS

PE

Section

(Relocation)

Resources

Sections

(code, data,

imports)

Base relocation block

Type/Offset array

Base relocation block

Type/Offset array

PE file on disk

PE HEADER | RELOCATION TABLE

PROPRIETARY INFORMATION

Decryption via relocations
To be able to decrypt the content correctly
the file always needs to be loaded through
relocation process on the same base
address. That way the decryption key wont
change and the data will be decrypted
correctly every time.
Pre Windows 7 SP1: If the file has an
ImageBase 0x00 it will always be loaded
on the base address 0x10000.
Post Windows 7 SP1: If the file has a base
address inside kernel memory it will
always be loaded on the base address
0x10000.

Decryption via relocations

DOS

PE

Sections

(code, data,

imports)

Overlay

Resources

Relocations

PE HEADER | RELOCATION TABLE

PROPRIETARY INFORMATION

Decryption via relocations
Every byte of selected section is encrypted
with forward addition encryption. The
value added is the value that the
operating system loader will subtract
when relocating the file.
New relocation table is created with four
entries per page so that decryption is
performed for every byte in reverse.
Every DWORD inside the selected section
is processed four times.
Scary? First malware (LeRock) using it was
detected last year. Its behavior was
described by Peter Ferrie in VirusBulletin.

Decryption via relocations

DOS

PE

Sections

(code, data,

imports)

Overlay

Resources

Relocations

demo

PE HEADER | RELOCATION TABLE

PROPRIETARY INFORMATION

demo

 ADDING A RELOCATION TABLE

PE file format layout

DOS

PE

Sections

(code & data)

Resources

Relocations

Memory data layout

Adding a relocation table
titan_add_base_relocation API is
used to add addresses from code
and data sections which need to be
relocated. Optionally the engine can
relocate these addresses while its
rebuilding the relocation table. This
can be used if the relocations have
not yet been applied to the specified
address.
titan_write_relocation_table API is
used to write the relocation table
data we pushed to the engine to the
specified location. For this PE data
table we added a new section.

Imports

Exports

PROPRIETARY INFORMATION

demo

 ADDING A RESOURCE TABLE

PE file format layout

DOS

PE

Sections

(code & data)

Resources

Relocations

Memory data layout

Adding a resource table

titan_add_resource_data API is
used to add new resources to the
file. Every resource is defined with
its name, type, language, code page
and data. Based on this data the
resource tree is constructed.
titan_write_resource_table API is
used to write the resource table data
we pushed to the engine to the
specified location. For this PE data
table we added a new section.

Imports

Exports

PROPRIETARY INFORMATION

demo

 EXPORTING THE PE32 FILE TO DISK

PE file format layout

DOS

PE

Sections

(code & data)

Resources

Relocations

Memory data layout

Exporting the created file

titan_export_file API is export the
current state of the PE header and
the sections from memory to disk.
When exported file is reconstructed
and its section content physical size
is minimized so that sections with
no data take-up no space on disk.
Sections which have data will be
scanned from the back for the first
non NULL byte. That size is then
aligned with FileAlignment and used
to write the data on disk.

Imports

Exports

d

i

s

k

PROPRIETARY INFORMATION

DETECTING
MALFORMATIONS

47

PROPRIETARY INFORMATION

 PE file validations
Headers

Disallow files which have headers outside the NtSizeOfHeaders
Disallow files which have too big NtSizeOfOptionalHeaders field value
Disallow files which have entry point outside the file

Sections
Disallow files with zero sections

Imports
String validation
Disallow table reuse and overlap

Exports
Disallow multiple entries with the same name
Disallow entries which have invalid function addresses

Relocations
Block files which utilize multiple relocations per address

TLS
Disallow files whose TLS callbacks are outside the image

DETECTING MALFORMATIONS

PROPRIETARY INFORMATION

 on PE file format malformations

PE is riddled with possibilities for malformation and we can’t always
predict them all or design our tools to be aware of all of them
Malformations can lead to serious consequences such application
crashes, buffer and integer overflows
Everyone implements their own PE parser which makes it impossible to
say whether or not a product is affected by a malformation and if so by
which ones
Unified document published by ReversingLabs is available at
http://pecoff.reversinglabs.com and will help you test your product’s
resilience to malformations (RL will maintain this document)

Validate_tool as a part of the TitanEngine 3.0 SDK can be used to
validate PE files, detect damaged or malformed ones and optionally
correct the detected damage if that is possible.

FINAL THOUGHTS

PROPRIETARY INFORMATION

THANK YOU!

50

May 25, 2012

